Solving Shift Register Problems over Skew Polynomial Rings using Module Minimisation
نویسندگان
چکیده
For many algebraic codes the main part of decoding can be reduced to a shift register synthesis problem. In this paper we present an approach for solving generalised shift register problems over skew polynomial rings which occur in error and erasure decoding of `-Interleaved Gabidulin codes. The algorithm is based on module minimisation and has time complexity O(`μ) where μ measures the size of the input problem.
منابع مشابه
Row reduction applied to decoding of rank-metric and subspace codes
We show that error and erasure decoding of `-Interleaved Gabidulin codes, as well as list-` decoding of Mahdavifar–Vardy codes can be solved by row reducing skew polynomial matrices. Inspired by row reduction of F[x] matrices, we develop a general and flexible approach of transforming matrices over skew polynomial rings into certain normal forms. We apply this to solve generalised shift registe...
متن کاملOn skew Armendariz and skew quasi-Armendariz modules
Let $alpha$ be an endomorphism and $delta$ an $alpha$-derivationof a ring $R$. In this paper we study the relationship between an$R$-module $M_R$ and the general polynomial module $M[x]$ over theskew polynomial ring $R[x;alpha,delta]$. We introduce the notionsof skew-Armendariz modules and skew quasi-Armendariz modules whichare generalizations of $alpha$-Armendariz modules and extend thecla...
متن کاملOn annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملOn constant products of elements in skew polynomial rings
Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1501.04797 شماره
صفحات -
تاریخ انتشار 2015